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Abstract—With the development of deep sequencing technologies, many
RNA-Seq data have been generated. Researchers have proposed many methods
based on the sparse theory to identify the differentially expressed genes from
these data. In order to improve the performance of sparse principal component
analysis, in this paper, we propose a novel class-information-based sparse
component analysis (CISCA) method which introduces the class information via a
total scatter matrix. First, CISCA normalizes the RNA-Seq data by using a Poisson
model to obtain their differential sections. Second, the total scatter matrix is gotten
by combining the between-class and within-class scatter matrices. Third, we
decompose the total scatter matrix by using singular value decomposition and
construct a new data matrix by using singular values and left singular vectors.
Then, aiming at obtaining sparse components, CISCA decomposes the
constructed data matrix by solving an optimization problem with sparse constraints
on loading vectors. Finally, the differentially expressed genes are identified by
using the sparse loading vectors. The results on simulation and real RNA-Seq data
demonstrate that our method is effective and suitable for analyzing these data.

Index Terms—Constrained optimization, feature selection, multivariate statistics,
principal component analysis, singular value decomposition
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1 INTRODUCTION

IT is one of the challenges in current molecular biology to find the
genes associated with specific biological functions or cellular
processes. Up to date, these genes have been detected more com-
prehensively than ever before by deep sequencing (also called
next-generation sequencing) technologies [1]. These technologies
have generated many data which make it possible to monitor
gene expression levels on a genomic scale and to understand the
mechanism of life [2], [3]. RNA-Seq uses deep sequencing tech-
nologies to sequence cDNA that has been derived from a RNA
experiment, and hence produces millions of short reads. These
reads are then typically mapped to a reference genome and the
number of reads mapping within a genomic feature of interest
(such as a gene or an exon) is used to quantify gene expression
in the analyzed sample [4].
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Because the nature of RNA-Seq data can result in different
experiments with dramatically different total number of sequence
reads, counts from each experiment should be normalized by the
sequencing depth of the corresponding experiment before any
comparison is made between experiments [5-8].

Generally speaking, only the differentially expressed (DE)
genes are fundamentally concerned by biologists. Although
expression profiles of thousands of genes are simultaneously mea-
sured, most genes expression profiles are flat and only a small
number of gene expression profiles are differential. Therefore, it is
a matter of great urgency to effectively identify the DE genes from
these RNA-Seq data.

Feature selection is the simplest method to identify the DE
genes. It first calculates a score for each feature, and then selects
the features with high scores [9, 10]. For example, PoissonSeq (PS)
method was proposed to identify the DE genes by Li et al. [7].
Because feature selection method separately calculates a score of
each feature, it ignores dependencies among features. The methods
of feature extraction have been proposed [11-14] to overcome this
shortcoming. Unlike feature selection, feature extraction simulta-
neously uses all the data information. Among feature extraction
methods, principal component analysis (PCA) [11] is the most com-
monly used one. Classical PCA is defined as follows:

Z" = arg max||Fz||,, (1)
<1

where F € R™™ is a data matrix encoding n samples of m
variables.

PCA has been used to analyze the deep sequencing data. For
example, Ji et al. used PCA for analyzing multiple deep sequencing
datasets to identify the differential protein-DNA interactions
between two biological conditions [15]. Pickrell et al. used PCA to
quantile-normalize the RNA-Seq data and to remove the confound-
ing effects [16]. Singh et al. used PCA to investigate the relation-
ships between the chickpea tissues on the whole-gene expression
data set [17].

A good analysis tool for biological interpretation should be able
to highlight ‘simple’ structures in the genome-structures. The
‘simple’ structures are expected to involve only a few genes that
are associated with a specific biological function or process [18].
The objective of sparse PCA (SPCA) is to make a trade-off between
statistical fidelity and interpretability. In recent years, many SPCA
methods have been proposed to maximize the explained variance.
For example, Journée et al. proposed a SPCA method by using gen-
eralized power method [18]. Zou et al. viewed SPCA as a regres-
sion optimization problem and imposed the LASSO penalty on the
regression coefficients [19]. Shen et al. used the singular value
decomposition (SVD) to obtain a low-rank matrix approximation
of a data matrix via sparse penalties [20]. Witten et al. proposed a
penalized matrix decomposition (PMD) via sparse penalties [21].

As mentioned above, only a small number of genes are differen-
tially expressed in gene expression data, so these sparse methods
can meet with requirements for analyzing these data. For example,
Lee et al. used SPCA to analyze high-throughput genomic data
[22]. In the case of DNA methylation, Zhuang et al. showed SPCA
outperforms many other feature selection methods [23].

Although these sparse methods have been widely used for
analyzing gene expression data, they have some deficiencies.
For instance, when class labels of samples have been known,
these methods cannot take advantage of the class information,
because they are unsupervised. In this paper, we propose a
method of class-information-based sparse component analysis
(CISCA) to improve the analytical performance for RNA-Seq
data. CISCA introduces the class information of samples by
using a total scatter matrix. The scheme of CISCA is given as fol-
lows: First of all, CISCA normalizes RNA-Seq data to obtain the
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differential section by using a Poisson model. Second, we get a
total scatter matrix based on the differential section of RNA-Seq
data. Third, CISCA decomposes the total scatter matrix by using
singular value decomposition and constructs a new data matrix
by using singular values and left singular vectors. Fourth,
CISCA decomposes the constructed data matrix to obtain the
sparse components by solving an optimization problem with
sparse constraints on loading vectors. Finally, the DE genes are
identified by using the sparse loading vectors.

The main contributions of our work are as follows: first, it pro-
poses, for the first time, the idea and method of CISCA for analyz-
ing RNA-Seq data; second, it introduces 6 to the constructed
matrix F, which strengthens strong signals and weakens weak sig-
nals; third, it brings class labels of samples into sparse PCA by total
scatter matrix; finally, it provides a large number of experiments on
simulation and real RNA-Seq data sets.

The rest of this paper is organized as follows. The methodology
of CISCA is shown in Section 2. Section 3 gives the results and dis-
cussion. Section 4 concludes this paper.

2 METHODOLOGY

In this section, the method of class-information-based sparse com-
ponent analysis is proposed.

2.1 Normalizing RNA-Seq Data

Assuming that all the data points are stacked as column vectors
of a matrix X with size m x n, in general, m > n. In the case of
RNA-Seq count data, for the sample j, x;; is the number of reads
overlapping gene i included in the Ensembl annotation of the given
organism’s genome [24]. Let Y denote a class labels vector. Assum-
ing that .zi‘;Poiéson ({U), where the form of ¢;; is given by a log-lin-
ear model as follows [7]:

log&;; = logd; + log B; + ejj, (2)
where

d;: the sequencing depth of sample j;

B;: the non-differential expression of gene i;

e;;: the differential expression of gene ¢ in sample j.
Without loss of generality, we assume that 3| d; = 1. And B, can be
calculated by ; = >, ;.

First, CISCA estimates the sequencing depth d; by using the Li’s
method in [7]. Then, the differential expression ¢;; of gene 7 in sam-
ple j can be calculated as follows:

e;; = log&;; — logd; — log ;. (3)

After obtaining the element ¢;; of differential expression matrix
E, we analyze the matrix E to identify DE genes by using feature
extraction method.

2.2 Definition of Scatter Matrices

Mathematically speaking, for all the samples of all classes, three
measures are defined: (a) the first one is between-class scatter
matrix which is given by

c

Sy = Ny — ) (u; — 1) )

J=1
where 1, is the mean of class j, /i represents the mean of all clas-
ses, ¢ is the number of classes, N; is the number of samples in
class j; (b) the second one is within-class scatter matrix which is
given as follows:

Su=)_, S (el =) el - ), ©)

where e/ is the sample i of class j; (c) the total scatter matrix can be
defined as follows [25]:

S¢ =S, — nSu, (6)

where 7 >0 is a regulation parameter which gives a trade-off
between S, and S,,,.
Let G = W3H' be the SVD of G, where G is defined as

S;= GG”, W and H are orthogonal, 3 = (EO" 8), S, € R is
diagonal, and ¢ = rank(S;). Then
S, = GG”
=WsH'H3'WT
= wis'w? @)
3 0
= W( ' )WT.
0 0

Let W = (W; W) be a partition of W, such that W, Rt
and W, € R™*(m1) Since S, = S, — S,,, we have

2
(Et 0) =W’ (S,—nS.,)W

0 0

wi wi

_(W%,)Sb(“h W2)_H<Wg Sw(Wl WQ)
_ [W]S\W, W{S,W, wis,w, wfs,w,
A\ WIS,W, WIS,W, WIS, W, WIS, W,/

(8)
It follows that W;FSbWQ — nWéFSwWQ = 0. Therefore

n = trace (WZTSI,WQ) /trace (WgSwWQ) , 9)

where the traces can measure the distances of between-class and
within-class scatter matrices [26].
We thus have
Wgsbwl - nwgswwl = 07 (10)
WIS,W, — nWTS, W, = 0.

Here, similarly with PCA, the off-diagonal and diagonal ele-
ments of S; may reflect the covariance between any two samples
and variance of the samples, respectively.

2.3 The Definition of Optimization Problem
To help improve the analytical performance for RNA-Seq data,
CISCA introduces the class information via the total scatter
matrix S;.

First, the total scatter matrix S; is decomposed by SVD, as given

by

S; = UAVT, 11)

where U, V are orthogonal and A = diag(8;,8s, - -, 8,) is a diagonal
matrix of the singular values, r is the rank of S;.
Then, CISCA constructs a new data matrix as follows:
F=(Ua’), (12
where 6 > 0 is a scaling parameter. When 6 = 0, F = U”. Because
the matrices S, defined in (4) and S,, defined in (5) are symmetic,
which will lead to a symmetic ‘total scatter matrix’ S;, the left and
right eigenvector matrices in (11) should be the same, implying
that the transformed F matrix should have the same eigenvectors
with S;. This also means that when 6 = 0.5, performing sparse
PCA on F would be equivalent to running sparse PCA on S;.
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We can find a reasonable sparse loading vector z by solving an
optimization problem under the sparse /;-norm constraint. The
optimization problem can be written as the following formulation:

z = arg max||Fz(l,~y/ [y, (13)

where y >0 is a sparsity-controlling parameter and B" =
{z € R"|2"z < 1} is referred to the unit Euclidean ball in R™.

2.4 The Solution to Optimization Problem
When y = 0, the optimization problem (13) degrades to the classi-
cal problem (1). The solution of problem (13) is equal to the first
principal component of the data matrix F.

For any z # 0, the following inequality can be deduced [18]:

2/(21‘ ‘zi|)
< max(zj |ZIH‘fLH2>/(ZI |ZL\) (14)

= max||fill,= [ fi[l5""-

max||Fz||,/] 2], = Inatzi zi fi

Provided that y > ||}, we have [Fz[,—y]|,< 0 for any
z # 0. So the range of sparsity-controlling parameter y should be
[0 ”fl”mav)'

In the case when r < < m, the feasible set of problem (13) is of
high dimension. According to Journée et al. [18], the following
equation can be deduced:

7 = argmax maxz TFz — vz,

2EB
m (15)
i=1 [Zz(fyTx) - ylail].

= arg max max
reB" zeB™M

Let % = sign(f] z)z (the sign function can obtain the sign of the

argument), the optimization problem (15) can be reformulated as
follows:

Z = arg max max n;l 1z (| fF =] = y). (16)

zeB" z21eB™M
When y € [0, fi]l5*), there is some z € B™. Fixing =z, the
closed-form solution of the problem (16) can be gotten for :

= el =) [V el =P =1em ap
where |g] = max{0, g}. Then transforming Z into z, the following
solution can be obtained [18]:

s =sn(72) | f7el = v) [\, el =P
(18)

Journée et al. proposed a generalized power method to solve the
optimization problem [18].

2.5 Multiple Components

CISCA can obtain multiple components by using deflation techni-
ques which solve the optimization problem (13) repeatedly, and
each time use the residual which can be obtained by subtracting
the part found previously from the original matrix. According to
d’Aspremont [27], the residual can be obtained as follows:

res =F — ¢z, (19)
where ¢ = Fzis the vector that solves
minHF—quHF. (20)

Further deflation techniques for PCA have been proposed by
Mackey [28].

F= Q xZ"
r, m -
ili
anm nxk Zrkxm

Fig. 1. The graphical depiction of CISCA of the matrix F, with factor scores Q and
PCs Z. 1; is the row vector of PCs Z, which transforms the data vector r; into factor
scores 1;. Correspondingly, §; is the column vector of PCs Z, which transforms the
data vector s; into factor scores §;.

2.6 The Algorithm
The algorithm of CISCA is shown as follows.

Algorithm 1. CISCA Algorithm

Input: Data matrix X € R™*"

Class label Vector: Y € N"*!

Sparsity-controlling parameter: y > 0

Number of principal components: k
Output: Loading matrix: Z € R™*
The differential expression matrix E is obtained via (3).
The total scatter matrix S; is obtained according to (6).
U, Aand V are obtained via decomposing S¢ by SVD.

F e (UA)

Forj=1:k
Loop

ted o fie Al -

Trer < /[t

yJ . sgn(f,iTa:).

Until a stopping criterion is satisfied.

2y < sen(fT2) || Fe| = v/ S, UfTel = y)Pi= 10 m.
qj <= FZJ.
F‘7'+1 = Fj — (]]Z?
End
2.7 Identification of Differentially Expressed Genes

In CISCA, Q is the matrix of factor scores, and Z is the loading
matrix of the principal components (PCs), which transforms the
data matrix into factor scores. The data matrix F, factor scores
matrix Q and PCs Z are shown in Fig. 1.

Fig. 1 shows that the PCs Z give the coefficients of the linear
combinations to compute the factors scores Q. So the bigger the
absolute value of the elements in PCs Z, the more contribution for
the factor scores matrix, the more important the corresponding
gene in F. So we can select the characteristic genes according to the
PCs Z.

Let
Ziz[21[,zm,---,z,,,,,1]T,i:1,---,k, (21)
denote the ith PC, the PCs can be given as the follows:
Z=[Zy,Z5,--,Zy). (22)

As the absolute value of the ith row of PCs Z somewhat denotes
the importance of the ith gene, we take the sum of all the entries’
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Fig. 2. An illustration of identification accuracies of these methods with different y
(n = 6). Note: PS and EdgeR are not sparse methods, which have nothing to do
with y.

absolute value of the ith row as the evaluating vector EV, which
can be expressed as follows:

(23)

T
BY = [0, el 30 lzal. - Yo el

In particular, if the dimensionality of the gene data is m, then
the EV has m entries. So we sort the evaluating vector EV in
descending order and select the genes that have the first num larg-
est entries as characteristic genes.

3 RESULTS AND DISCUSSION

In this section, we evaluate the proposed method by applying it to
identify the DE genes associated with a special biological process
or biological function. Section 3.1 gives the results on simulation
data. Results on real RNA-Seq data sets are given in Section 3.2.
For comparison, we also use the PoissonSeq (PS) [7], SPCA [18],
Penalized Matrix Decomposition [21] and EdgeR [29] methods to
extract the features on these data sets.

3.1 Simulation Data

The simulation data are introduced in this Section 3.1.1. Then, the
results are shown in Section 3.1.2.
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Fig. 3. An illustration of the identification accuracies of our method with different
indices 0, when n. = 6 and y=0.3.

ldentification accuracies of different methods

Average accuracy (%)

75 L L L L I
4 6 8 10 12 14 16

Number of samples (n)

Fig. 4. Identification accuracies of the five methods on the simulation data set with
different numbers of samples.

3.1.1 Data Source

We use (2) to generate the simulation data with m = 20,000 genes
(roughly equal to the number of genes in the human genome) and
n=4,6,---,16 samples. In the two-class case, we assign half of the
samples to each class. To generate the mean counts of the samples
dy,ds, -, d,, we let log d_,'u1[1if~01r1n(4,6)7 j =1,---,n, which gives
us between 1 and 8 million total counts per sample. To obtain the
gene expression profile analogous to a real RNA-Seq dataset, we
let B; = N;/ (3111 Ni/m), where N;, i=1,---,m are the counts
of all the genes in the Wang dataset [30]. We let e;; = y; * ¢; in (2),
where y; is the label of each class. For 90 percent genes of non-dif-
ferential expression, ¢; = 0, and 7 percent genes are up-regulated
with ¢; = 1, and 3 percent genes are down-regulated with ¢, = —1.
We randomly assign non-negative integer numbers to the indices
of DE genes.

3.1.2 Results on Simulation Data

In this experiment, the DE genes are identified by using PS, PMD,
SPCA, EdgeR and CISCA. Except for PS and EdgeR, other methods
are sparse versions, whose sparsity-controlling parameter y has
influence on identification accuracy. According to the algorithm in
[21], in the case of PMD, y should be restricted to the ranges
[1/y/m,1). Here, we test y in the interval [0.1,0.9] with step = 0.1.
We iterate 30 times to randomly generate the simulation data.
Fig. 2 shows the average identification accuracies of these methods
with different y while n = 6. From this figure, we note that when
y € [0.3,0.5], our method (CISCA) can get the highest identification
accuracy. When y € [0.1,0.6], SPCA can give the higher identifica-
tion accuracy. However, when y > 0.7, the identification accura-
cies by using both SPCA and CISCA are decreased, which may be
caused by the too strong constraint. When y = 0.2, PMD gives the
highest identification accuracy. When y > 0.3, the identification
accuracies of PMD method are close to PS and EdgeR. So in the fol-
lowing experiments, y is set to 0.3 for SPCA and CISCA. For PMD,
y is set to 0.2.

TABLE 1
An Overview of the Data Sets
Data sets Number of Number of Number of
samples classes reads
Maqc 14 2 71,970,164
Wang 22 17 223,929,919
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TABLE 2
The GO Terms of Genes Identified by These Methods on Maqc Data Set
Rank Name TIA CISCA SPCA PMD PS EdgeR
P-value Hit P-value Hit P-value Hit P-value Hit P-value Hit

1 Genes with H3K27me3 in MEF cells. 589 1.32E-55 95 141E-54 94 1.84E-52 92 1.89E-21 57 799E-47 86
2 synaptic transmission 788 231E-38 96 4.59E-36 93 133E-30 86 4.17E-28 84 9.32E-18 66
3 Set ‘H3K27 bound’: genes mark in human 1,117 9.76E—-34 98 5.12E-33 97 4.46E-28 90 1.64E-18 75 158E-32 96

embryonic stem cells, as identified by

ChIP on chip
4 Genes with H3K27me3 in MCV6 cells 434 578E-33 62 739E-35 64 4.65E-31 60 298E-13 38 6.71E-21 48
5 Human Brain Chen—Plotkin08 747genes 594 880E-32 70 8.80E-32 70 6.96E-31 69 3.79E—-42 82 5.02E-16 49
6 cell—cell signaling 1,281 223E-31 112 2.71E-28 107 4.14E-25 102 297E-22 99 1.52E-19 91
7 Synapse 646 3.85E-25 70 4.76E-23 67 3.04E-18 60 4.77E-26 72 1.89E—09 44
8 transporter activity 1,220 1.27E-19 89 438E—-19 88 226E-16 83 9.08E—13 77 4.51E-10 68
9 neuron part 1,130 3.71E-18 82 7.19E-21 87 1.89E-15 77 1.16E-32 107 2.73E-08 60

In this table, “TIA(Term in Annotation)” denotes the number of genes associated with the term in global genome; "Hit" denotes the number of genes associated with

the term in query.

Then, the index 6 in (12) can make a difference in the perfor-
mance of our method, so we test the performances of our method
with different indices # in an interval [0, 4.5] with step = 0.5. We iter-
ate 30 times to randomly generate the simulation data with n = 6.

Fig. 3 shows the identification accuracies of our method with
different indices 6, when y = 0.3. From this figure, we can see
that when 6 = 0.0, our method has very lower identification accu-
racy; when 6 = 0.5, the identification accuracy can reach above
80 percent; the identification accuracy has a peak at 6 =1.5. It

means that if the new matrix F is constructed by using (UA“’)T,
we can obtain the highest performance of our method. So 6 is set
to 1.5 in the following experiments.

The identification accuracy is closely related to the number of
samples. Fig. 4 shows the average identification accuracies of
these methods with different sample numbers. In this experi-
ment, we set y =0.3 for SPCA and CISCA methods and set
y = 0.2 for PMD method. From this figure, it can be seen that
the identification accuracies of all these methods are improved
by increasing the sample numbers. While n > 8, PS method
reaches a plateau in term of identification accuracy. Moreover,
while n > 6, CISCA outperforms the other methods on identifi-
cation accuracy and its identification accuracy can reach above
95 percent.

3.2 RNA-Seq Data Sets

Two publically available RNA-Seq data sets are used to evaluate
our method, i.e., Maqc [31] and Wang [30]. An overview of the
data sets can be found in Table 1. Typically, these data are
assigned to some classes (usually, genes) based on their map-
ping to a common region of the target genome. By obtaining

SPCA

PMD

PS

Fig. 5. Overlap among the sets of DE genes identified by the four methods on the
Magqc data set.

tens of millions of short reads from the transcript population of
interest and mapping these reads to the genome, RNA-Seq
produces digital (count) rather than analog signals [32]. Here,
these RNA-Seq count data sets are downloaded from http://
bowtie-bio.sf.net/recount [33]. For a comparison, 500 genes are
selected by each of these methods.

3.2.1 Results on Maqc Data Set

The Maqc data set is composed of 14 samples which are derived
from Ambion’s human brain reference RNA and Stratagene’s
human universal reference RNA.

First of all, the Gene Ontology (GO) enrichment of functional
annotation is checked by using ToppFun [34] which is publicly
available at http://toppgene.cchmc.org/enrichment.jsp. We inves-
tigate the enrichment of functional annotations by inputting the
500 genes identified by these methods into the ToppFun, whose
p-value is set to 0.01 and other parameters are used as default.
Table 2 lists the closely related GO terms found by ToppFun.

In this table, there are 589 genes in the genome with the term of
‘Genes with H3K27me3 in MEF cells’. SPCA, PMD, PS and EdgeR
can identify 94, 92, 57 and 86 genes, respectively. At the same time,
CISCA can identify 95 genes and has the lowest P-value (1.32E-55).
Moreover, the SPCA can give the close P-value. This may be
caused by the reason that our method (CISCA) is the generalization
of SPCA. This table also lists some other terms with the most
significance.

Next, we study the overlap among the sets of DE genes identi-
fied by using different methods. Fig. 5 shows the overlap among

TABLE 3
The GO Terms of Genes Shared by These Methods on Maqc Data Set
Rank Name P-value Hit TIA
1 Human Brain Chen-Plotkin08 6.03E-28 40 594
747genes
2 Genes with H3K27me3 in MEF cells. 5.80E-27 39 589
3 synaptic transmission 7.72E-24 44 788
4 neuron part 2.63E-18 44 1,130
5 cell-cell signaling 5.67E-18 47 1,281
6 Set ‘H3K27 bound’: genes mark in 6.51E-18 40 1,117
human embryonic stem cells, as
identified by ChIP on chip.
7 synapse part 2.75E-17 29 469
8 synapse 4.00E-17 33 646
9 neuron projection 4.88E-17 39 945

In this table, “TIA(Term in Annotation)” denotes the number of genes associ-
ated with the term in global genome; ‘Hit" denotes the number of genes associ-
ated with the term in query.
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TABLE 4
The GO Terms of Genes Identified by These Methods on Wang Data Set
Rank Name TIA CISCA SPCA PMD EdgeR
P-value Hit P-value Hit P-value Hit P-value Hit
1 Genes with H3K27me3 in MEF cells 589  351E-41 80 222E-33 72 531E-20 55 4.80E-10 39
2 Genes with H3K27me3 in MCV6 cells 434  140E-28 57 529E-19 46 275E-09 35 8.04E-06 25
3 Set ‘Suz12 targets’: genes identified by ChIP on chip as 1,038 552E-28 86 6.33E-18 71  1.65E-07 54 530E-16 67
targets of the Polycomb protein SUZ12
4 Genes with H3K4me2 and trimethylation at K27 1,069 9.23E-28 87 1.94E-26 86 121E-15 68 139E-17 71
(H3K27me3) in brain
5 Genes with H3K27me3 in neural progenitor cells (NPC) 341 1.87E-26 49 796E-16 37 4.65E-10 32 6.03E-09 27
6 Human EmbryonicStemCell Xu09 1801genes 1,430 1.57E-25 98 198E-36 116 1.98E-21 92 436E-10 68
7 cell-cell signaling 1,281 4.65E-18 89 749E-17 88 1.35E-13 81 143E-05 17
8 neuron projection 945  427E-17 72 407E-10 59 279E-06 49 3.69E-03 38

In this table, “TIA(Term in Annotation)’ denotes the number of genes associated with the term in global genome; ‘Hit” denotes the number of genes associated with

the term in query.

the sets of DE genes. From this figure, we note that the DE genes
identified by CISCA are to a large extent identified also by PS,
SPCA and PMD. Here, only 10 genes identified by CISCA are not
shared with other methods. In contrast, PS identifies a fair amount
of “‘unique” DE genes that are not shared with other methods (PS
has 315 ‘unique’ genes). Moreover, there are 481 genes shared by
SPCA and CISCA, which may reflect CISCA is the generalization
of SPCA and has similar performance with SPCA. There are 162
genes shared by all the four methods.

Finally, The 162 genes shared by the four methods are input
into the GO tool. ToppFun’s p-value is set to 0.01 and its other
parameters are used as default. Table 3 lists the closely related GO
terms found by ToppFun. There are 40 genes in the term of
‘Human Brain Chen-Plotkin08 747genes’. The term has the lowest
p-value (6.03E-28), so it is considered as the most probable enrich-
ment item. Some other terms with the most significance are also
listed in this table.

3.2.2 Results on Wang Data Set

The Wang data set contains 22 samples which are derived from the
following tissues: adipose, brain, breast, cerebellum (Cerebellum
#4), colon, heart, liver, lymph node, skeletal muscle and testes.
Here, we assign the samples to 17 classes according to http://
bowtie-bio.sourceforge.net/recount/phenotypeTables/wang
phenodata.txt. Since PS method is used in two-class case, here only
SPCA, PMD, EdgeR and CISCA are compared.

We investigate the enrichment of functional annotations by input-
ting the 500 genes identified by these methods into the ToppFun,
whose p-valueis set to 0.01 and other parameters are used as default.
Table 4 lists the closely related GO terms found by ToppFun.

In this table, there are 589 genes in the genome with the term of
‘Genes with H3K27me3 in MEF cells’. SPCA, PMD and EdgeR can
identify 72, 55 and 39 genes, respectively. At the same time, CISCA
can identify 80 genes and has the lowest P-value (3.51E-41). The
term has the lowest p-value (2.59E-40), so it is considered as the
most probable enrichment item. Moreover, although our method
(CISCA) is the generalization of SPCA, CISCA gives the superior
identification perfomance on Wang data set. We note that ‘cell-cell
signaling’ is also included in this table, which are consistent with
the idea that these GO functional categories are likely to contribute
to fundamental differences in the different human tissues [30].
This table also lists some other terms with the most significance.

4 CONCLUSION

In this paper, the novel method, CISCA, is proposed to improve the
performance of identifying DE genes from RNA-Seq data. It intro-
duces the class information via the total scatter matrix. This
method takes advantage of class labels of samples, so it can

improve the identification ability. By integrating the normalizing
method of RNA-Seq data and matrix decomposition method,
CISCA is suitable for analyzing the RNA-Seq data. Last but not
least, on simulation and real RNA-Seq data, the results demon-
strate that our method is effective.

In future, we will focus on the biological interpretation of the
identification genes.
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